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Abstract 

Background Diagnostic methods for urothelial cancer (UC) are often invasive, while urinary cytology, a non-invasive 
alternative, suffers from limited sensitivity. This study aimed to identify differentially methylated markers in urinary 
tumor DNA and develop a diagnostic method to enhance the sensitivity of non-invasive UC detection.

Methods Whole-genome bisulfite sequencing and deep methylation sequencing were employed to identify signifi-
cantly hypermethylated UC-associated genes in clinical samples and public UC datasets. Further screening was con-
ducted using tumor biopsies and urine samples from patients, leading to the selection of three hypermethylated UC 
markers. A diagnostic model based on these markers was constructed and validated in a cohort (N = 432) comprising 
patients with UC, other cancers, benign lesions, and non-UC urinary tract diseases.

Results Validation in a cohort of 432 subjects demonstrated that the UC diagnostic model, incorporating three 
hypermethylated markers (VIM, TMEM220, and PPM1N), achieved an overall sensitivity of 94.44% in 108 UC patients. 
Specificities were 96.34%, 90.76%, and 87.72% in 191 non-neoplastic individuals, 76 patients with benign lesions, 
and 57 patients with other cancers, respectively, resulting in an overall specificity of 93.52%. Methylation level analysis 
revealed significantly higher methylation (P < 0.001) for three markers in UC samples compared to non-UC sam-
ples. Furthermore, the model exhibited sensitivities of 80% and 88.57% for detecting stage 0a/0is and stage I UC, 
respectively.

Conclusions The UC diagnostic model demonstrates excellent diagnostic performance, particularly in the early 
detection of UC. This non-invasive approach, characterized by high sensitivity and specificity, holds significant poten-
tial for further clinical evaluation and development as a reliable tool for UC diagnosis using urine samples.
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Background
Urothelial cancer (UC) is a common malignant neoplasm 
of the urinary system, ranking as the ninth most preva-
lent cancer worldwide [1, 2]. UC represents the predomi-
nant type of cancer in the bladder and urinary tract, in 
contrast to less common histological subtypes such as 
squamous cell carcinoma, sarcoma, lymphoma, and 
adenocarcinoma [3]. UC primarily includes upper tract 
urothelial carcinoma (UTUC) and urothelial bladder can-
cer (UBC) [4]. Among these, UBC is the most prevalent, 
accounting for approximately 80% of UC cases, with its 
incidence steadily increasing on an annual basis [5]. The 
initial symptoms of urothelial carcinoma are often sub-
tle, leading to delayed diagnosis at middle or advanced 
stages, which significantly reduces the 5-year survival 
rate. For instance, in UBC cases, the 5-year survival rate 
exceeds 88% for non-muscle invasive bladder cancer 
(NMIBC), whereas it drops to 50% for muscle-invasive 
bladder cancer (MIBC) [6, 7]. Therefore, early screening 
and diagnosis of UC are critical for improving the 5-year 
survival outcomes of affected individuals.

Current diagnostic methods for UC include endos-
copy, imaging techniques, and urine analysis [8]. While 
endoscopy and biopsy remain the gold standard for diag-
nosis, these procedures are invasive and often associ-
ated with limited patient compliance. Ultrasonography, 
a non-invasive and user-friendly imaging technique, has 
limited efficacy in detecting carcinoma in  situ (0is) and 
small lesions [9]. Numerous studies have investigated 
urinary tumor markers for UBC, such as nuclear matrix 
protein 22 (NMP22) and bladder tumor antigen (BTA). 
However, their clinical utility is constrained by low sen-
sitivity, which may result in missed diagnoses [10]. Con-
sequently, there is an urgent need for a non-invasive and 
highly accurate diagnostic technique to detect UC at an 
early stage. Research on the methylation of exfoliated 
tumor cell DNA in urine has shown promise in address-
ing this challenge, particularly for detecting early-stage 
cancer lesions that are difficult to identify or unsuitable 
for endoscopic evaluation [11]. This approach not only 
enhances the sensitivity and specificity of UC detection 
but also gains increasing acceptance among patients [12].

DNA methylation is a critical epigenetic modifica-
tion that regulates gene expression without altering the 
underlying genetic sequence [13]. Recent studies have 
highlighted its pivotal role in the initiation and progres-
sion of UC. Alterations in DNA methylation patterns are 
emerging as promising biomarkers for the early detection 
of UC. For example, Xiao et al. analyzed the specific DNA 
methylation profiles of urothelial bladder carcinoma and 
developed a method to detect these methylation charac-
teristics in urine samples. Their findings demonstrated 
that changes in urine free DNA methylation patterns 

could serve as reliable biomarkers for the non-invasive 
detection, prognosis, and surveillance of UBC [14]. 
Similarly, Wang et al. assembled a cohort of 373 cases to 
develop UCseek, a highly sensitive model for detecting 
and monitoring UC progression. UCseek exhibited excel-
lent performance when independently validated [15]. 
These findings underscore the potential of DNA methyla-
tion as a viable approach for addressing the challenges of 
early UC detection.

In this study, we performed differential methylation 
analysis using clinical samples and public datasets to 
identify and filter candidate genes. Further screening led 
to the selection of three hypermethylated markers. We 
also developed a method to detect these hypermethyl-
ated markers using quantitative methylation-specific 
PCR in clinical urine samples. Finally, we constructed a 
diagnostic model based on the three hypermethylated 
markers and validated it using clinical samples, includ-
ing urine from 432 cases. This model has the potential to 
facilitate the early diagnosis of UC at a treatable stage.

Methods
Study design
This study was conducted in three distinct phases: the 
discovery stage of differentially methylated genes (DMG), 
the marker screening stage, and the clinical validation 
stage (Fig.  1A). In the DMG discovery stage, differen-
tial methylation analyses of an in-house whole genome 
bisulfite sequencing (WGBS) cohort and the TCGA-
BLCA cohort were integrated to identify preliminary 
differential methylation sites for further selection. The 
second phase, the marker screening stage, focused on 
identifying specific markers for constructing the final 
diagnostic model. Urine samples collected in-house were 
utilized for panel-targeted sequencing and quantitative 
methylation-specific PCR (qMSP). The third phase, the 
clinical validation stage, involved incorporating the opti-
mized markers into a diagnostic model and evaluating its 
performance in a clinical validation cohort.

Study populations and samples
In the DMG discovery stage, a total of 98 tumor and 
non-tumor tissue samples were collected and ana-
lyzed from Liaocheng People’s Hospital. The in-house 
cohort comprised 9 bladder cancer tissues, 7 normal 
bladder tissues, 10 ovarian cancer tissues, 8 non-can-
cerous ovarian tissues, 8 prostate cancer tissues, 9 non-
cancerous prostate tissues, 9 kidney cancer tissues, 9 
non-cancerous tissues, 9 endometrial cancer tissues, 
10 non-cancerous uterine tissues, 5 cervical cancer 
tissues, and 5 non-cancerous tissues. These samples 
were employed for whole genome bisulfite sequenc-
ing (WGBS), during which preliminary differential 
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methylation sites indicative of pan-cancer hypermeth-
ylated genomic regions were identified. Additionally, 
differential methylation analysis was conducted using 
public datasets based on the 450 K array. The TCGA 
dataset included data from 412 cases of bladder urothe-
lial carcinoma (BLCA) tissues and 21 matched adja-
cent non-tumor tissues. The GEO dataset (GSE40279) 
comprised data from blood leukocytes of 656 healthy 
individuals. The overlapping hypermethylated genes 
identified from these two datasets were carried forward 
for further analysis.

In the marker screening stage, urine samples were 
collected from 10 urothelial cancer patients and 
10 healthy controls for targeted deep methylation 
sequencing, resulting in the identification of 12 selected 
markers. Subsequently, a quantitative methylation-spe-
cific PCR (qMSP) method was developed. Primers and 

probes for the 12 selected marker genes were designed, 
and qMSP was performed on 9 bladder cancer cell lines 
and 12 non-cancerous urine samples. The cell lines 
included M-UC- 3, SW780, J82, TCCSUP, SCaBER, 
HT- 1376, 5637, T24, and RT4. Six marker genes were 
chosen based on a cutoff threshold. Finally, three meth-
ylation markers were identified using logistic regres-
sion analysis on urine samples from 20 UC patients, 20 
non-neoplastic individuals, and 20 patients with other 
tumors.

In the clinical validation stage, a three-marker diag-
nostic model was developed and its effectiveness 
verified using 432 urine samples, including 108 UC 
patients, 76 patients with benign diseases, 191 non-
neoplastic individuals, and 57 patients with other 
cancers.

Fig. 1 Research workflow and the preliminary screening of the methylation markers. A A workflow indicating the study design. DMG, differential 
methylation gene. WBC, white blood cell. WGBS, whole genome bisulfite sequencing. BLCA, bladder urothelial carcinoma. UC, urothelium 
carcinoma. qMSP, quantitative methylation-specific PCR. B The distribution of differential DNA methylation sites across autosomes analyzed 
by in-house WGBS data. The standard of filtering differential sites was defined as the absolute mean difference being greater than 0.05 (|delta|> 
0.05) per 100 k genomic interval. The regions colored in green, less differential sites. The regions colored in red, more differential sites. The total 
number of differential sites on autosomes is 10,834. C Heatmaps showed methylation levels respectively for selected 25 potential markers and 12 
potential markers in different groups of samples. Left panel, 9 UC tumor tissues and 7 non-UC tissues were tested by WGBS. Right panel, urine 
samples from 10 UC patients and 10 non-UC individuals were tested by panel-targeted deep methylation sequencing. The scale bars indicate 
the methylation levels scaled by Z-score, which red means high level and blue means low level. D The plots presented by IGV tool showed the VIM 
gene methylation in tissues and urine samples. The data processed were derived from BAM file alignments. Red represents T, thymine. Blue 
represents C, cytosine. Green represents G, guanine



Page 4 of 13Wu et al. Cancer Cell International          (2025) 25:148 

Ethics approvals
Approval for this study was obtained from the Medical 
Ethics Committee of the participating hospital. All pro-
cedures adhered to the ethical standards of the responsi-
ble committee on human experimentation (institutional 
and national) and complied with the Helsinki Declaration 
of 1964 and its later amendments. Informed consent for 
participation in the study was obtained from all patients. 
The ethical approval number is as follows:

Liaocheng People’s Hospital, 2,023,151.

Differential methylation genes (DMG) discovery
Bioinformatics analysis of public dataset identifying 
differential‑methylation genomic sites
The methylation 450 K array data from 412 BLCA tissues 
and 21 paired adjacent normal tissues from TCGA were 
analyzed. Probes with a default value proportion exceed-
ing 70% were excluded. For differential site selection, 
the R package ChAMP (version 2.21.1) [16] (450 k Chip 
Analysis Methylation Pipeline) was utilized, employing 
the BMIQ method for normalization and the Benjamini–
Hochberg method to correct P-values (< 0.01). Selected 
sites were characterized by higher methylation in cancer 
tissues, with a mean difference > 0.2 (Tumor minus Nor-
mal > 0.2) between cancer and normal samples. Addition-
ally, these sites were filtered against 656 blood leukocyte 
samples from healthy controls (GSE40279), retaining 
sites with a mean methylation level < 0.1 in blood leuko-
cytes. This process led to the identification of the top dif-
ferential-methylation genomic sites from TCGA-BLCA 
dataset.

Bioinformatics analysis of in‑house WGBS dataset identifying 
differential‑methylation genomic sites
The 30X WGBS was performed on 98 tissues (50 tumor 
tissues vs. 48 non-tumor tissues). The tissues included 
various cancer types and corresponding adjacent normal 
tissues, representing the significance of pan-cancer tissue 
methylation. DNA from paraffin-embedded tissues was 
extracted, fragmented to ~ 200 bp using ultrasonication, 
and subjected to bisulfite conversion. Library preparation 
was executed using the xGen™ Methyl-Seq DNA Library 
Prep Kit. Sequencing was conducted on the Illumina 
NovaSeq platform. The Bismark software (version 0.23.0) 
[17] was utilized to analyze WGBS data, applying a fil-
tering criterion (Tumor minus Normal > 0.1), ultimately 
identifying top differential-methylation genomic sites 
from in-house WGBS dataset.

Then the top differential-methylation genomic sites 
from TCGA-BLCA dataset and in-house WGBS dataset 
were intersected to obtain the top 25 differential-methyl-
ation markers for subsequent selection.

Candidate marker screening
Panel‑targeted methylation sequencing
To further identify effective methylation markers, we 
constructed a 28.7 Mb panel based on differential meth-
ylation sites, encompassing 17,388 CpG islands and 
3,311,582 CpGs. This panel facilitated deep methylation 
sequencing on 20 urine samples (10 UC vs. 10 non-UC) 
with an average depth exceeding 500X. DNA from uri-
nary exfoliated cells was extracted, fragmented to ~ 200 
bp, bisulfite-treated, and prepared for library construc-
tion. A custom TWIST probe panel was employed for 
hybridization and capture, followed by sequencing. Data 
analysis using Bismark software (version 0.23.0), with a 
criterion (Tumor minus Normal > 0.1), identified 12 dif-
ferentially methylated genes.

The details of the in‑house panel are as follows:
Targeted bisulfite sequencing was performed for all 
cfDNA and gDNA samples. The size of interested region 
is 28.7 Mb, covering 17,388 CpG islands (CGI) and 
3,311,582 CpGs. Genes related with cancer and meth-
ylation were obtained from multiple databases, including 
976 cancer driver genes, 1,220 tumor suppressor genes, 
1,284 methylation related genes across multiple can-
cers, 732 cancer associated genes from COSMIC (Cata-
logue Of Somatic Mutations In Cancer, https:// cancer. 
sanger. ac. uk/ cosmic) and 26 leukemia genes. First, the 
promoters located 2.5 kb upstream and 500 bp down-
stream of the transcription start sites (TSS) of the genes 
were merged to form our region of interest. Second, CGI 
regions within these genes, as well as CGI-shore and 
CGI-shelf regions, were incorporated into the region of 
interest, which may be associated with cancer dysfunc-
tion. Third, a comparative analysis identified the 1,000 
most significantly differentially methylated positions 
(DMPs) relative to normal tissues for various cancer 
types from TCGA databases, including LUAD, LUSC, 
COAD, LAML, BRCA, CESC, ESCA, LIHC, OV, PAAD, 
PRAD, STAD, and BLCA.

Quantitative methylation‑specific PCR (qMSP)
The qMSP procedure was conducted as described in the 
study published by Nie et al. [18]. After bisulfite conver-
sion of the extracted DNA, it served as a template for 
PCR amplification in a total volume of 30 µL, compris-
ing 15 µL of prepared reaction mix and 15 µL of bisulfite-
treated DNA. The PCR amplification program consisted 
of: 94 °C for 20 min; (93 °C for 30 s; 57 °C for 35 s) for 45 
cycles; and 40 °C for 5 s. The PCR instruments employed 
were the Applied Biosystems 7500 Fast Real-Time PCR 
System (Applied Biosystems) or the SLAN- 96S Fully 
Automated Medical PCR Analysis System (Shanghai 
Hongshi Medical Technology Co., Ltd.). Each experiment 

https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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included patient-extracted samples, positive controls, 
and negative controls.

Primers and probes were designed for the selected 12 
differentially methylated genes. Then qMSP was per-
formed using DNA extracted from 9 bladder cancer cell 
lines and 12 non-cancerous urine samples. Subsequently, 
six candidate methylated DNA markers were identified, 
exhibiting a sensitivity greater than 60% in bladder can-
cer cell lines and a specificity exceeding 80% in non-can-
cerous urine samples. The qMSP was then conducted on 
samples from 20 UC patients, 20 non-neoplastic individ-
uals, and 20 patients with other cancers. The cut-off value 
for Ct was set at 45, with positive cases defined as Ct < 45. 
The three differential methylation genes with the highest 
accuracies were selected.

Urine sample processing
Urine samples (40–50 mL) were collected using Urine 
DNA Storage Tubes containing a sample-protection solu-
tion (CWBIO Co., Ltd.) prior to patients undergoing sur-
gery and therapy. The urine was transferred into a 50 mL 
centrifuge tube and centrifuged at 4,000 rpm to retain 
the precipitate. The precipitate was washed with PBS and 
stored at − 80 °C.

The diagnostic model construction and verification using 
clinical samples (432 cases)
A three-marker diagnostic model was constructed based 
on the principle that a single positive result indicates a 
positive diagnosis for UC, while three negative results 
indicate a negative diagnosis. This logic was supported 
by ROC curve analysis, which demonstrated its superior-
ity over logistic regression. The three genes selected were 
the top-accuracy genes among the six candidate meth-
ylated DNA markers. To verify the performance of the 
model, qMSP for the three genes was conducted on urine 
samples from 108 UC patients, 191 non-neoplastic indi-
viduals, 76 patients with benign lesions, and 57 patients 
with other tumors, applying the diagnostic logic of the 
model.

Results
Discovery of potential DNA methylation markers 
for urothelial cancer
To identify potentially reliable candidate biomarkers for 
UC, the current study followed three main steps, includ-
ing discovery of differentially methylated genes (DMGs) 
using public data in conjunction with our own cohort, 
followed by marker screening conducted on multiple 
types of samples, and finally, the clinical validation for 
diagnostic model in urine samples (Fig. 1A). In the DMG 
discovery step, we utilized publicly available 450 k array 
data from the TCGA database (TCGA-BLCA), including 

data from 412 bladder cancer samples and 21 paired 
adjacent non-cancerous tissues. Differential methylation 
analysis was employed to identify genomic regions with 
significantly higher methylation levels in UC tumor tis-
sues compared to adjacent non-tumor tissues. To ensure 
the accuracy of our differential methylation analysis and 
avoid false-positive results, we excluded interference 
from leukocyte-derived DNA, which could obscure dis-
tinctions between malignant and benign diseases of the 
urinary tract. Since our proposed non-invasive diagnos-
tic method relies on cell-free DNA (cfDNA) extracted 
from urine, it was critical to eliminate the influence of 
leukocyte DNA methylation. To achieve this, we utilized 
publicly available genome-wide methylation data from 
blood leukocytes of 656 healthy individuals (GSE40279) 
as a filter. Specifically, we excluded loci with an average 
methylation level greater than 0.1 in leukocyte DNA, 
ensuring that leukocyte-derived genomic DNA in urine 
would not affect the detection results. We prioritized the 
top 100 candidate markers for downstream research and 
displayed the differential methylation levels between 412 
bladder cancer samples and 21 paired adjacent non-can-
cerous tissues from TCGA in Supplemental Fig. 1.

To further narrow the range of candidate markers, we 
obtained 98 clinical tissue samples (50 tumor tissues and 
48 non-tumor tissues) from the hospital specified in the 
Methods section for 30X WGBS analysis. Methylation 
levels were calculated across 100 kb genomic intervals, 
which identified significantly differentially methylated 
sites. The distribution of these sites across autosomes 
is presented in Fig.  1B. Based on the mean difference 
in methylation levels between groups, 25 differentially 
methylated sites were selected from the 100 candidate 
markers described earlier. These sites were further exam-
ined in 9 UC tumor samples and 7 non-tumor tissues 
from the 98 in-house clinical tissue samples (Fig. 1C, left 
panel).

To further evaluate whether the candidate mark-
ers identified in comparisons between cancerous and 
non-cancerous tissues could similarly distinguish urine 
samples from cancer patients and non-cancer patients, 
we collected urine samples from an additional 10 UC 
patients and 10 patients with benign diseases. Using an 
in-house panel (28.7 Mb, details provided in the Meth-
ods section), targeted deep methylation sequencing (630 
M reads) was performed on these 20 urine samples. 
Differential analysis identified 12 differentially methyl-
ated genes from the 25 previously selected sites, with 
their methylation levels visualized in a heatmap (Fig. 1C, 
right panel). Among these 12 hypermethylated candi-
dates, VIM was previously reported to be associated 
with urothelial cancer [19], prompting us to focus on this 
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gene. Differences in methylation levels detected in both 
tissue and urine samples are shown in Fig. 1D.

Further marker screening and construction 
of a non‑invasive diagnostic model for urothelial cancer
To identify the most effective markers for UC detection 
among the 12 candidate DMGs, we evaluated their meth-
ylation levels in 9 UC cell lines and 12 urine samples from 
healthy volunteers. Quantitative methylation-specific 
PCR (qMSP) assays were developed for each candidate 
marker, resulting in average detection rates exceeding 
60% for all 12 genes across the cell lines (Fig. 2A). Six of 
these candidate DMGs demonstrated sensitivity > 60% 
and specificity > 80% and were selected for further evalu-
ation as potential UC biomarkers.

In the final step of the iterative screening process, 60 
urine samples were analyzed, including samples from 20 

patients with urothelial cancer, 20 non-neoplastic indi-
viduals with other urinary tract-associated disorders, and 
20 patients with other cancers. qMSP detection of the 
six candidate markers was performed on these 60 urine 
samples using the same cutoff value and criteria (CT < 45, 
positive; CT ≥ 45, negative). Among these DMGs, VIM 
exhibited the highest detection rate (80%) in UC patients 
(Fig.  2B). Further analysis of marker accuracy revealed 
that VIM, TMEM220, and PPM1 N demonstrated the 
highest accuracy among the 60 urine samples (Fig. 2C).

Based on these findings, a diagnostic model was con-
structed using these three markers, VIM, TMEM220, 
and PPM1 N. The diagnostic model was designed such 
that a single positive result for any of the three markers 
(VIM, TMEM220, or PPM1 N) indicated the presence of 
UC, while all three negative results indicated the absence 
of UC. Receiver operating characteristic (ROC) analysis 

Fig. 2 Construction of three-marker diagnostic model. A The sensitivity and specificity of selected 12 candidate markers in 9 UC cell lines 
and 12 healthy people urine samples. Testing method, qMSP. B The circle bar plot showing the respective positive cases of 6 candidate markers 
in UC patients (N = 20), non-neoplastic individuals (N = 20) and other tumor patients (N = 20). Testing method, qMSP. C The pie chart showing 
the accuracy of 6 candidate markers (corresponding y-axis value of each pie). The components of each pie represent the numbers of true positive 
case in UC group (red), true negative case in non-neoplastic group (blue) and true negative case in other tumors group (purple). The x-axis 
represents gene names of 6 candidate markers. D The ROC curves of four diagnostic markers, accuracy top 3 genes (VIM, TMEM220 and PPM1 N) 
and Combine Parallel (three-marker diagnostic model), shown in the graph for distinguishing 20 UC patients from other 40 non-UC cases. The 
AUC values for each diagnostic markers were marked in the graph legend. Three-marker diagnostic model was based on the logic of single-gene 
positive indicating positive and triple negative indicating negative
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revealed an area under the curve (AUC) of 0.912 for the 
three-marker combined model, which was higher than 
the AUC values obtained for any single marker (AUC 
range: 0.776–0.884; Fig.  2D). These results collectively 
suggest that this three-marker combined model provides 
sufficient accuracy and sensitivity for the non-invasive 
diagnosis of UC in urine samples, making it a promising 
tool for clinical application.

Validation of the three‑marker UC diagnostic model 
in a clinical validation cohort
To validate the accuracy and sensitivity of the three-
marker diagnostic model, we analyzed 432 urine sam-
ples, including 108 urothelial carcinoma (UC) cases, 191 
non-neoplastic urinary tract disorder cases, 76 benign 
disease cases, and 57 cases with other cancers. Table  1 
provides cohort statistics and patient demographic infor-
mation. To assess the model’s specificity in distinguish-
ing UC from other malignancies, the cohort included 
samples from patients with renal cancer, prostate can-
cer, endometrial cancer, cervical cancer, and other can-
cers (Fig.  3A). Risk analysis demonstrated that all three 
genes had significantly higher methylation scores in UC 
samples compared to the other three groups (P < 0.001), 
further confirming the elevated methylation levels of 
these genes in UC patients relative to non-UC individu-
als (Fig.  3B). Additionally, the three-marker diagnostic 
model achieved an area under the curve (AUC) value 

of 0.94 for detecting UC patients in the full validation 
cohort (n = 432), outperforming single-gene detection, 
which yielded AUC values ranging from 0.782 to 0.88 
(Fig. 3C). Parallel analyses for distinguishing UC patients 
from various other groups in the cohort are presented as 
ROC curves in Supplemental Fig. 2A–2D, with AUC val-
ues for the three-marker diagnostic model ranging from 
0.911 to 0.954. An analysis of sensitivity for UC detection 
and specificity among other cancers, benign lesions, and 
non-neoplastic individuals was conducted for the three-
marker combined model (PPM1 N, TMEM220, and VIM) 
as well as for each marker individually. Among the indi-
vidual markers, VIM demonstrated the highest accuracy, 
correctly identifying 92.82% of the samples (401 out of 
432). However, VIM exhibited lower sensitivity (76.85%) 
compared to the three-marker combined model, which 
achieved a sensitivity of 94.44% (Fig.  3D). Based on 
these findings, the three-marker diagnostic model dem-
onstrated superior accuracy and sensitivity, making it a 
robust tool for distinguishing UC patients from non-UC 
individuals.

Further analysis of different marker combinations 
revealed that VIM alone could detect the majority of 
true positive samples (83/102), but its performance was 
significantly improved when combined with TMEM220 
and PPM1 N (Fig. 4A). This finding highlights the higher 
detection rates achieved by the three-marker diag-
nostic model compared to each individual marker. To 

Table 1 The clinical information of the model-testing cohort

Model-testing cohort, 432 cases in total, containing 108 UC patients, 191 non-neoplastic individuals, 76 benign lesions patients, and 57 other cancers patients.
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evaluate the effectiveness of the three-marker diagnos-
tic model in detecting early-stage UC, we compared its 
sensitivity across samples from different UC stages. The 
model demonstrated a sensitivity of 80.00% (95% CI, 
44.39%–97.48%) for stage 0a/0is samples, 88.57% (95% 
CI, 73.26%–96.8%) for stage I samples, and 100% (95% CI, 
83.89%–100%) for stage II samples (Fig.  4B). Stratifica-
tion of patients by disease group, genotype, and cancer 
stage further revealed that the overwhelming majority 
(97.70%) of triple-negative cases were non-urothelial can-
cer individuals, with only 2.30% of triple-negative cases 
corresponding to stage 0a/0is–I UC. Conversely, nearly 
all triple-positive cases (38/39) were stage 0a/0is–IV UC 

cases, with the only non-UC triple-positive case belong-
ing to the other cancers group. These findings suggest 
that patients positive for hypermethylation of all three 
markers are highly likely to have malignant lesions, even 
if not UC, based on clinical diagnosis (Fig.  4C). Addi-
tionally, a radar chart summarizing the performance 
indicators of the three-marker diagnostic model in the 
model-testing cohort (n = 432) showed a positive pre-
dictive value (PPV) of 82.93% and a negative predictive 
value (NPV) of 98.06% (Supplemental Fig. 3). Histologi-
cal analysis using H&E staining of representative tumor 
tissue sections from cases that tested positive in the 

Fig. 3 Performance verification of the three-marker diagnostic model in the model-testing cohort. A The three-layer pie chart showing the detail 
types of cases included in the model-testing cohort (N = 432). B Scatter boxplot showing the risk score of qMSP for the three methylation markers 
included in the model. Risk Score equals to delta-CT value (45-CT). *** means P value < 0.001. C The ROC curves of VIM, TMEM220, PPM1 N, Combine 
Parallel (three-marker diagnostic model) and logistic regression model in distinguishing the UC cases from all the non-UC cases in model-testing 
cohort. The AUC values for the different categories were marked in the graph legend. Three-marker diagnostic model was based on the logic 
of single-gene positive indicating positive and triple negative indicating negative. Logistic regression model was based on the logistic regression 
algorithm of VIM, TMEM220 and PPM1 N. D Vertical stacked bar plots of correct identifications as UC-positive or UC-negative, including true positive 
numbers and percentages in UC cases, as well as true negative numbers and percentages in benign lesion cases, non-neoplastic cases, and other 
tumor types
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model-based detection showcased samples from different 
UC stages, including stage 0a/I, II, and III/IV (Fig. 4D).

Discussion
In the field of early UC diagnosis, there is a need for non-
invasive methods with excellent performance. Our study 
developed a diagnostic approach for detecting urothelial 
cancer by assessing the DNA methylation levels of three 
markers (VIM, TMEM220, and PPM1 N) in urine. Dur-
ing the process of marker screening, our methodology 
leverages whole genome bisulfite sequencing (WGBS), 
targeted panel methylation sequencing, and qMSP to 
identify and validate stable hypermethylation events 
across multiple sample types, including tissues, urine, 
and urothelial cancer (UC) cell lines. After confirm-
ing the final selection of three marker genes, a diagnos-
tic model was established based on qMSP for the three 
markers. Finally, we verified the diagnostic performance 
of the model in a testing cohort including 432 individuals.

A key novelty of this work lies in our integrated 
approach to marker screening, which not only uncovers 
differentially methylated sites but also provides insights 
into the genomic context of these alterations. While the 
overall methylation levels of the genome in tumors are 
generally lower than those in normal tissues, which can 
lead to decreased genome stability and increased muta-
tion rate [20], there are still many silenced tumor sup-
pressor genes with hypermethylation in tumor tissues 
being identified [21]. Studies in oncology have shown 
that promoter CpG island hypermethylation is frequently 
linked to the repression of tumor suppressor genes and 
can serve as a robust diagnostic indicator [22, 23]. There-
fore, to facilitate the construction of a qMSP-based 
detection approach, we chose genes that are highly meth-
ylated in tumor tissues as candidate markers.

Our analyses suggest that the three markers, VIM, 
TMEM220, and PPM1 N, exhibit significantly higher 
methylation levels in urinary tumor DNA (utDNA) rel-
ative to non-cancer specimens. Further inquiring their 

Fig. 4 The application of diagnostic model in different urothelial cancer stages. A The correctly detected numbers (true positive numbers) of three 
single-gene diagnostic markers and their overlaps. B The true positive number and the sensitivity of three-marker diagnostic model in different 
clinical stages of the 108 UC patients in model-testing cohort. C Sankey diagram showing the component and the grouping trend of different ways 
of classification. The cases included all urine samples used in the study, except for the 30 cases lacking definite staging information. V represents 
for VIM. T represents for TMEM220. P represents for PPM1 N. D HE-staining pictures of tumor tissues sections. Histological photos of 6 representative 
cases were presented, 2 cases of stage 0a – stage I, 2 cases of stage II, and 2 cases of stage III – stage IV. Scale bar represents for 300 μm
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genomic regions, it finds out that these markers’ hyper-
methylation events occur within promoter CpG islands, 
which could infer the marker gene silencing and the 
association with tumor biology. Then we further con-
sidered the biological relevance between marker meth-
ylation and their diagnostic utility.

VIM presents a cytoskeletal protein, Vimentin, which 
functions in maintaining cell structure and plays a cru-
cial role in cell mechanosensing and signaling transduc-
tion. The VIM knockout mice showed that the recovery 
of tissues following various types of injuries was altered 
[24]. Besides, several studies reported that VIM is high 
methylated in cancer tissues or peripheral blood and 
its aberrant methylation will cause cancer cells more 
aggressive and metastatic, as well as proposing that 
VIM could be a diagnostic biomarker of cervical cancer, 
colorectal cancer and gastric cancer [25–27]. It can be 
speculated that hypermethylation events occurring in 
the promotor of VIM gene suppressed its expression in 
carcinoma, leading to the promotion of the mesenchy-
mal-epithelial transition process [28], whose abnormal 
regulation can be considered to facilitate tumorigenesis 
and progression.

TMEM220 is the Transmembrane Protein 220, a 
component of membrane and signaling transduction 
molecule. Previous studies indicated that TMEM220 
is hypermethylated in gastric cancer and colon adeno-
carcinoma [29, 30]. Other investigators reported that 
the expression level of TMEM220 is low in hepatocellu-
lar carcinoma and is associated with poor prognosis in 
patients, indicating that downregulation of TMEM220 
promotes the progression of hepatocellular carcinoma 
[31]. Considering that the highly methylated DNA region 
we used for marker detection is also located in the pro-
moter region of TMEM220, the hypermethylation of the 
marker suggests its downregulation of mRNA expres-
sion levels in urothelial cancer tissues. According to Li 
et  al., aberrant expression of TMEM220 would disturb 
the β-catenin signal and FOXO3 subcellular localization, 
resulting in abnormal downstream gene expression [31]. 
Thus, alterations in TMEM220 promoter methylation in 
UC may contribute to the similar pathway variations and 
promote cancer progression.

PPM1 N is Protein Phosphatase,  Mg2+/Mn2+ depend-
ent 1 N, a member of Metal-dependent Ser/Thr protein 
phosphatase PPM family, which was predicted to be 
involved in the regulation of canonical Wnt signaling 
pathway [32, 33]. Although we detected the hypermeth-
ylation of promotor region in PPM1 N gene, the biologi-
cal relevance about PPM1 N methylation is less studies. 
Thus, our data are the first to report its significant hyper-
methylation in utDNA from UC patients, suggesting a 
potential role in tumor progression.

The alert for urothelial cancer in early stage is impor-
tant to therapy and outcomes. The current primary diag-
nostic methods include cystoscopy and cytology [3]. The 
cystoscopy is invasive and often associated with discom-
fort, while the non-invasive cytology showing a poor sen-
sitivity (25%− 35%) [34–36]. Our noninvasive diagnostic 
model based on qMSP demonstrated an overall sensitiv-
ity of 94.44% and specificity of 93.52%, with especially 
high performance in detecting early-stage (stage 0a/0is 
sensitivity: 80.00%) UC. Furtherly, in the non-invasive 
methods of early screen of UC, detection in urine has 
more advantages than detection in blood samples. 
Besides the easy accessibility, urine-based testing allows 
for more timely detection of bladder cancer lesions com-
pared to blood-based testing. Because the exfoliation 
of malignant cells and the tumor DNA release from the 
lesions on urinary tract always happens before the inva-
sion of them, including migration to adjacent tissue and 
vascular invasion [37, 38]. Moreover, comparing with 
detecting ctDNA of colon cancer et al., which the circu-
lating tumor DNA from adenocarcinoma may need to 
pass through the vascular wall, the urinary tumor DNA 
(utDNA) could be detected in urine directly after releas-
ing from malignant epithelium [39]. This phenomenon 
likely contributes to the high early-detection perfor-
mance of the biomarker model, enhancing its diagnostic 
utility. Besides, the detection technology we employed 
is quantitative methylation-specific PCR, which is eco-
nomical and feasible. These indicate our findings could 
be a potential early diagnosis product with remarkable 
effectiveness.

The diagnostic model indicates this convenient detec-
tion method could improve early detection and patient 
compliance. Importantly, comparing to previously 
published diagnostic model for bladder cancer which 
exhibited an overall sensitivity of 90.0% and a specific-
ity greater than 80% [40], our model displayed a more 
satisfactory sensitivity of 94.44% and a higher specific-
ity (total specificity, 93.52%), especially in distinguishing 
non-neoplastic individuals, which displayed a specificity 
of 96.34%.

Despite the promising results, several limitations of 
this study should be acknowledged. First, the sample size, 
while sufficient for initial validation, remains relatively 
small and limited to a single cohort. This limitation may 
affect the generalizability of the findings, as the cohort 
may not fully capture the heterogeneity of UC across 
different populations and clinical settings. Second, the 
reliance on qMSP, while cost-effective and feasible, may 
limit the scalability of the assay in high-throughput clini-
cal applications. Emerging technologies such as digital 
PCR or next-generation sequencing offer higher sensi-
tivity, multiplexing capabilities, and scalability, which 
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could be advantageous for broader clinical implemen-
tation. However, these technologies also come with 
higher costs and technical complexity, which may pose 
challenges for routine use in resource-limited settings. 
Future studies should explore the feasibility of integrat-
ing qMSP with these advanced technologies to balance 
cost-effectiveness and scalability. Third, while the three 
selected markers demonstrated excellent diagnostic per-
formance, the biological mechanisms underlying their 
hypermethylation and its functional impact on UC pro-
gression remain incompletely understood. This gap in 
knowledge limits our ability to fully interpret the clinical 
significance of these markers and their potential role in 
UC pathogenesis.

In addition, we acknowledge several limitations related 
to the data and analytical methods used in this study. 
First, we utilized the Area Under the ROC Curve (AUC) 
as the primary metric for evaluating model performance, 
prioritizing models with higher AUC values. However, it 
must be recognized that AUC, as an assessment criterion, 
has inherent limitations. While AUC reflects the overall 
performance of models across all possible thresholds, it 
does not capture the variations in performance at specific 
thresholds. In clinical diagnostics, the choice of thresh-
old can significantly impact the rates of false negatives 
and false positives, which are critical for clinical deci-
sion-making. Therefore, a high AUC does not necessar-
ily guarantee that a model will meet clinical requirements 
in practice. To address this limitation, we selected a fixed 
threshold in this study to calculate specific sensitivity 
and specificity values. Additionally, we reported other 
metrics to complement AUC and provide a more com-
prehensive evaluation of the diagnostic model’s clinical 
applicability. Second, during the DMG discovery phase, 
we relied on the TCGA database to identify methylation 
differences between bladder cancer tissues and adjacent 
non-tumor tissues. However, the biomarkers identified 
in this phase were ultimately intended to distinguish can-
cer from non-cancer individuals. Previous studies have 
demonstrated that there can be significant epigenetic dif-
ferences between adjacent non-tumor tissues and truly 
normal tissues [41, 42]. Due to ethical considerations, 
obtaining truly normal tissue samples is unproper, both 
in public databases and in clinical research. To address 
this limitation in future studies, we plan to use urine 
samples from healthy individuals to further validate and 
refine candidate biomarkers. This approach will help cor-
rect for potential biases and minimize the impact of this 
limitation when the final diagnostic model is applied in 
clinical practice.

Future research should involve larger-scale, multi-
center studies to validate the efficacy of these find-
ings in clinical application, referring to the clinical 

diagnostic biomarker study conducted by Zhang et  al. 
[43], as well as Nie et  al.’s study [18]. Additionally, 
comparative cost/benefit analyses, as well as integra-
tion with other liquid biopsy techniques, could further 
define the clinical utility of this approach in routine 
practice and optimize application scenarios to maxi-
mize patient benefit. By exploring the genomic and epi-
genetic landscapes of these markers in greater depth, 
future studies may elucidate the mechanistic connec-
tions between promoter methylation events and UC 
pathogenesis. Basic medical research, including the 
use of animal models and cell lines, could involve more 
molecular biology experiments to conduct comprehen-
sive matrix studies, thereby enhancing the diagnostic 
model and advancing precision oncology.

Conclusions
Our study demonstrates the potential of a three-marker 
diagnostic model (VIM, TMEM220, and PPM1 N) as a 
highly accurate and sensitive tool for the non-invasive 
detection of urothelial cancer. This model demonstrates 
robust performance, particularly in detecting UC at early 
stages, underscoring its promising clinical utility. These 
findings provide a strong foundation for future clinical 
applications and suggest that this diagnostic approach 
could improve early detection, guide treatment decisions, 
and ultimately enhance patient outcomes in urothelial 
cancer management.
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